
Applying trust metrics based on user interactions to
recommendation in social networks

Alberto Lumbreras
Universitat Politècnica de Catalunya

Barcelona, Spain
Email: alumbreras@lsi.upc.edu

Ricard Gavaldà
Universitat Politècnica de Catalunya

Barcelona, Spain
Email: gavalda@lsi.upc.edu

Abstract—Recommender systems have been strongly re-
searched within the last decade. With the arising and pop-
ularization of digital social networks a new field has been
opened for social recommendations. Considering the network
topology, users interactions, or estimating trust between users
are some of the new strategies that recommender systems can
take into account in order to adapt their techniques to these
new scenarios. We introduce MarkovTrust, a way to infer trust
from Twitter interactions and to compute trust between distant
users. MarkovTrust is based on Markov chains, which makes
it simple to be implemented and computationally efficient. We
study the properties of this trust metric and study its application
in a recommender system of tweets.

I. INTRODUCTION

Recommender systems have emerged as an effective re-
sponse to the so-called information overload problem in which
users are finding it increasingly difficult to filter the huge
amount of information they are exposed to. Finding useful
information in the web is another challenge that recommender
systems help to solve. With the popularization of social
networks, recommender systems had a new scenario with
its own particularities that had to be taken into account.
Network structure and users interactions can give extra in-
formation to be considered by recommender systems. Trust-
based recommenders usually combine trust between users with
traditional recommender techniques to improve the quality of
the recommendations. Computing trust between users is here
a necessary step, and several proposals have been made [1]
[2]. However, what trust is and how trust propagates across
a social network is a problem that does not have a one-for-
all solution. As network topology, as well as user behavior,
change among networks, every network requires a particular
analysis.

Twitter 1 is a social network that allows users to post
140-character text messages (or tweets). Users subscribe (or
follow) to other users’ publications. Twitter then shows a
personalized live feed (or timeline) to every user by aggre-
gating the tweets of people they follow (followees) by time
of publication. Also, Twitter users can interact between them
by means of forwarding a friend’s tweet to their respective
followers (retweet) or by mentioning other user to chat. The
more people a user follows, the more her timeline shows more

1www.twitter.com

tweets and it becomes harder to read them all. This is an
interesting problem for a recommender system, that might help
users to filter, order or discover really interesting tweets.

We propose a method to compute trust on Twitter. This
method estimates trust from user interactions and computes
its propagation through a simple algorithm that we call
MarkovTrust. MarkovTrust is similar to other trust propagation
algorithms proposed in the literature. Our contribution is
evaluating how this family of trusts performs on Twitter, and
whether it can improve the quality of recommendations.

To evaluate recommendations we propose an architecture for
social recommendations. Here we explore different techniques
at three different levels: crawling, trust propagation and text
mining. Crawling aims to get the optimum set of neighbors for
every user, in such a way that the value of items published in
this neighborhood is maximized. Trust and trust propagation
aim to compute trust between pairs of users and use this
information to enhance recommendations with social infor-
mation rather than just using content-based recommendations.
Text mining focuses on how to encode tweets and how to
compute similarities to use in a content-based recommendation
of tweets.

II. RELATED WORK

There have been some proposals to compute trust on the
web. EigenTrust [3] considers trust as a function of successful
interactions (e.g. a file download from a node) in a peer-to-peer
network. A direct trust matrix is created with this information
from every pair of nodes. Trust propagation is computed by
calculating its eigenvector matrix. This gives a local metric of
trust from every pair of nodes.

Advocato (http://advogato.org) is based on Levien’s trust
metrics [4]. Within Advocato, each user has a single rating
calculated from the perspective of a group of seed nodes.
Trust has three levels (apprentice, journeyer and master) and
its propagation is computed using a network flow model. The
computed trust is global, thus assigning a single trust value to
every node which is trusted similarly from every node in the
network. Advocato is designed to make public key certification
more attack-resistant.

In [5], a method similar to Advocato is proposed, but using
spreading activation strategies instead of maximum flow to
compute a local trust value instead of a global one. Appleseed



is also a group trust metric. This means that trust is computed
from a set of seed nodes and therefore, for a given node, its
trust is shared within a group. Like EigenTrust, Appleseed is
based on finding the principal eigenvector of a trust matrix.
This is the reason why it cannot deliver an absolute trust value
as trust is normalized, but a ranking of nodes according to their
trust.

Richardson et al. [6] aim to compute the belief a user
may have in another user’s statement. They propagate trust
by finding paths from the source to every node which holds
an opinion on the statement. They concatenate trust along the
paths and finally aggregate trusts along the found paths.

All these methods normalize trust before computing trust
propagation. This make trusts from different users incompa-
rable, as a user with more trusted nodes will assign a lower
level of trust to each of them (trust is limited and shared among
peers). Golbeck proposes TidalTrust [1] to avoid this problem
by keeping the original trust scale while trust propagation
is computed. TidalTrust proposes using FOAF meta-data to
compute trust for recommendations. It extends the FOAF
ontology adding a trust level that ranges from 1 to 10. Trust
is explicitly annotated by users, and then propagated by the
TidalTrust algorithm.

Song et al. [7] propose an information flow model based
on Markov chains to predict user behavior based on early
adopters behaviours. They aim to solve the following question:
“If one user or multiple users access an item, who else is likely
to follow these early adopters and access this item next?.”
They designed a general model and a topic-sensitive model,
and consider timestamps to deal with the temporal notion of
adoption.

In this paper we propose a method similar to that of
EigenTrust adapting the computation of direct trust from a
P2P network to the Twitter social network. As EigenTrust,
we will infer direct trust analyzing the interactions between
users. Inferring trust from interactions in Twitter has an
additional problem of fetching these interactions. There are
several types of interactions in Twitter and thus this translation
from interactions into trust will have to be carefully analyzed.

In order to summarize, we address here two main questions:
(a) how can we adapt existing trust metrics to Twitter?
(b) does trust information help in recommending tweets?

For the first question we will adapt EigenTrust to our
scenario and evaluate it in a similar way to that of TidalTrust,
as it is also a recommender system scenario. For the second
question, we will develop a basic recommender system frame-
work for social networks. Once we have a set of candidate
tweets for a given user, we will test whether adding trust
information improves classical recommendation methods.

III. TRUST ON TWITTER

If Twitter had an explicit feedback mechanism, that is, the
possibility for users to rate other users (or their tweets), we
could create a trust metric that considers the positive feedback
towards other users. The more positive feedback a user u has
given over a user v, the higher confidence on the assertion

that user a trusts user b. If Twitter had a FOAF-like tagging
like the WOT (Web Of Trust) proposed by Golbeck [1] where
users explicitly annotate trusts on other users, we could use
(not considering computationally costs for this scenario) their
TidalTrust algorithm to propagate trust.

But we do not have such a feedback or annotation mecha-
nism on Twitter. Instead, we have to analyze the interactions
between users to indirectly estimate how much a user trusts an-
other one. Using the Twitter public API we can get information
on this interactions. We propose using these interactions and
translating them into a measure of direct measure of estimated
trust.

Twitter users interact in three ways: (a) following other user
tweets (b) retweeting other user’s tweet (c) mentioning another
user or (d) favoriting another users’ tweet. The question here
is how these interactions can be cast to a measure of direct
trust.

• The action of a following b means that a wants to receive
all the tweets published by b. A user can start following
someone for many reasons. The user might have been
recommended by Twitter or by a friend. A common
case is that b has been retweeted or mentioned many
times by a person that a is already following, and a
eventually decided to follow b because a thought that
b publications are interesting. Following is not a clear
indicator of trust. Users follow users (apart from cases
of personal friendship) because they think they will be
interested on what they post. However, if after a period
of time this profile was not as interesting as expected,
users can stop following (unfollow) others. Therefore, we
cannot infer much information from a following b.

• The action of a retweeting a tweet t from user b means
that a found the content of t (or the link it refers to)
interesting, and a expects her friends to like the content
of t as well. If a tends to retweet b a lot, it can be inferred
that a trusts b at some level. It is reasonable to think that
the more a retweets b, the more confident we can be
that a trusts b. Our trust model is gradual, that is, we
do not compute the probability of a trust relation, but its
strength. Therefore we can say that the more a retweets
b the stronger is her trust on b.

• The action of a mentioning b on a tweet t means that
a wants b to read the tweet. It can be a single tweet or
a whole set of crossed mentions between a and b (e.g.
a discussion). Since mentions can be used in so many
ways (e.g. expression of disagreement or notification)
we cannot be sure, without further analysis, whether
a mention expresses trust, distrust, or none of them.
However, we think mentions usually express some kind
of trust relationships (people tend to relate to those people
who think like them) so we will consider a mention as a
positive indicator of trust.

• The action of a favoriting a tweet t from b may have
two meanings. One possibility is that a uses favorites
as a “read it later”, usually a tweet with some link to
external content. Another possibility is that a wants to



keep this tweet because she liked it (e.g. it was funny,
or has some content that a wants to access easily in
the future). Therefore, we can say that favorites mostly
express a trust relation. However, as Twitter does not
provide in the API the time when a user favorites some
tweet we do not to consider favorites.

Mentions and retweets express trust, but they might not
express trust with the same strength. We are sure about
retweets, but mentions contain more ambiguity. As we will
see later, we propose weighting these interactions to fine tune
the trust model.

Some Twitter users have specialized profiles on some topic
(e.g. politics or machine learning) and some others have gen-
eral profiles and post about many topics. An ideal computation
of trust would detect the topics of every tweet involved in
a mention or a retweet, and would increase trust only on
those topics. Though the problem they tackle is different,
such a topic-based influence is considered for instance in [7].
For simplicity’s sake, we compute trust in a general way,
considering that if a trusts b on a topic T , a trusts b on any
topic.

We consider users trust their friends proportionally to the
number of interactions. Given a user u, she shares her total
trust between every user she has interacted with (mentioned or
retweeted). For instance, if user a had 10 interactions shared
amongst user b (3 retweets), user c (5 retweets) and user d (2
retweets), her trust tab is 0.3, trust tac is 0.5, and trust tad is
0.2. Note a user a can interact with a user b even if a does not
follow b. For instance, if user b published a tweet t and another
user which is followed by a retweets t, t will be published on
a’s timeline. As mentioned before, we will consider weighting
interactions according to whether it is a mention, or retweet.
It can be formally expressed by the next formula:

tij =
wN

(m)
ij + (1− w)N

(rt)
ij

Ni
(1)

where Nij is number of interactions from i to j, Ni is the
number of total interactions originated by a, and w is the
weight assigned to retweets against mentions. Our intuition
is that w should have a value between 0.5 and 1. We chose
w = 0.5. Superindexes denote mention interactions (m) or
retweet interactions (rt).

Note that by assigning a limited amount of trust to share
among friends, we are losing the real magnitude of trust.
Instead, what we get is an ordered list of users by their
assigned trust.

A. Trust propagation

So far we have discussed how to infer trust strength between
two users (a and b) when a has directly interacted with b.
However, most users have never interacted between each other.
Let c be a user followed by b and not by a. Let tuv be the trust
of user u on user v. The goal of a trust propagation model is
to compute tac from trust tab and tbc.

Note that equation 1 can be seen as transition probabilities
of a Markov chain if tij is seen as the probability of an

interaction from i to j. If the network is interpreted as a
Markov chain, we can apply a random walk model considering
trusts as probabilities and, in general, considering trust tab as
the probability for a to reach b. In Markov models, the t-step
distribution is the distribution after taking t steps from the
starting distribution. It is denoted by Πt = Π0P t where Π0

denotes the initial probability distribution over states and P t

is the transition matrix P raised to the t-th power. As we are
considering trust from every user, the initial probability is set
to 1 for every user and P is then a vector of ones. Thus we
have Πt = P t. In order to avoid confusion between steps and
trust, we denote steps as s. If considering trust as transition
probabilities, the probability of walking from node i to node
j after s steps can be expressed as:

t
(s)
ij =


tij if s = 1∑
k

tikt
(s−1)
k,j if s ≥ 1 (2)

where the probability of i reaching j after s steps is seen
as the probability of taking a single step to some vertex k
and then taking s − 1 steps to j. Note that the model takes
into account every path from i to j and with a maximum of
s steps.

However, instead of having a fixed number of steps s, we
want to consider that users have an horizon of trust of one
step, two steps and so on up to s steps. Moreover, we want
to apply a decay probability to tune the importance of closer
neighbors. In a matrix form, we can express this as:

T s =
1

s

s∑
n=1

αnP
n (3)

where P is the initial transition matrix with components tij
and α is a decay factor which value will be discussed in
section VI. Our intuition is that s = 3 is a good choice.
Inferring trust further than this would lead to a lower accuracy
on trust. To avoid dead end nodes, for those users with no
outcoming interactions we artificially assign an equal amount
of interactions to very other user in the network.

To reduce computing cost we truncate the transition matrix
Q by deleting every trust value below a threshold. We will
explain this truncation later. If P has n× n dimensions, with
a naive computation it takes a time of O(sn3).

B. Temporal dynamics of trust

Users change their preferences over time. It can be caused
by a personal shifting on her interests or because new topics
appear and old topics become obsolete. In the first case, most
changes occur slowly and gradually, as are more attached to
the user’s personal interests. In the former case, changes occur
very fast (e.g. breaking news that the user is interested on).

Another interesting aspect is temporal dynamics on the trust
relationships. Over time, Twitter users start following some
new users and unfollow some of their old friends. Twitter users
can do so to optimize their twitter feed with information or
people they are really interested on.



Ideally, these dynamics should be considered by a recom-
mender system. But it is not the main goal of this system to
deal with this kind of dynamics. However, and as the trust
model drives the crawling, which is a critical part of the
system, we apply a simple decay model to capture some of
the trust dynamics. Our model ages the old interactions so
that the newer prevail when profiling the user. We apply a
forgetting factor to old interactions of a user every time she
creates a new one. New retweets imply a decay on old retweets
and new mentions imply a decay on old mentions. Let ~vu be
the vector of interactions from user u. Let ~ua a new vector
with one element set to one and the rest set to zero. The n-th
element corresponds to the user that received the interaction
from u. The decay can then be expressed as:

~vu = λ~u+ (1− λ) ~vu (4)

where ~b is a vector with all zeros but a one in the position
of user b. The more dynamic the trust is, the higher value λ
should have to age old interactions. Our intuition is that trust
does not change dramatically and a λ = 0.1 will suffice.

Note that this decay is applied to the transitions matrix, not
directly into the trust matrix. The former will be computed
from the first.

IV. LIMITATIONS OF OUR SETTING

As researchers, analyzing a network such as Twitter brings
some limitations. First, we do not have access to the whole
network. Twitter freely provides a public API with strong
limitations for developers in order not to overload their net-
work. Using this API limits the extension and frequency of
the crawling that our system can make to fetch either tweets
or interactions between users. Our crawler has to fetch Twitter
data without reaching the API limits. As a consequence, there
is a limitation of the users of our system (target or seed users)
and a limitation on how many neighbors of these users we
crawl.

Recommender systems can be tested online or offline.
Online approaches test the algorithms on real time, giving us
a real feedback on how our system behaves out of the lab.
However, online tests are not trivial to design and they are
costly as any modification in the algorithms will have to be
tested again. Offline tests can use past behavior of users to
use it as test set. This allows us to run the algorithms over
an over again, but the results will not be as accurate. Within
this approach we assume that past behavior is a good model
of present behavior, which is not true specially when dealing
with rapidly changing contexts such as Twitter. What was
interesting one week ago might have lost its information value
today. Because of time limitation, we followed this offline
approach on our tests.

These factors prevent us from getting to strong conclusions
over the results of our work. We will therefore limit ourselves
to discuss the obtained results to get an intuition of the quality
of our model and its possible enhancements.

V. ARCHITECTURE

For testing the MarkovTrust on Twitter we designed a
system that crawls users and fetches their interactions. After
a period of crawling, we will be able to see how MarkovTrust
performs and whether it can serve as a basis for recommending
tweets.

The system is divided in two modules: a crawler and a
recommender. The crawler updates a list of most influential
neighbors for every target user and fetch their tweets. It stores
these tweets for the recommender to use them as its item
database. The recommender learns a model for every user
from the user tweets, retweets, and mentions and later makes
personalized recommendations of tweets for every target user.
The next sections describe these two modules in more detail.

Fig. 1. Architecture of the system considering two seed users A and B

A. Crawler

At the first cycle, the crawler has only a collection of target
users that have registered in the system. These users are those
who will receive recommendations from the system. They
serve as seed nodes for the crawler to start looking for trusted
users in the neighborhood. In the next step, the algorithm
iterates through every user to get their last published tweets.
Every tweet is then parsed looking for interactions (mentions
and retweets) and the interaction matrix is then updated. When
there are no more users left, the interaction matrix is truncated



by leaving only the n-top interacted users of every target
user. Using the resulting matrix as the transition matrix, trust
between every pair of remaining users is recomputed. From
the final trust matrix, we get a new list of m-top trusted users
that will be crawled in the next cycle. The system then sleeps
for some hours in order not to overload the Twitter API.

1) Crawling: The aim of the crawler is to get a collection
of tweets that maximizes the probability of being liked by the
seed users. If trust is well computed and is significant to what
users like, a good crawling would improve the possibility of
making good recommendations as the items to choose from
will be an interesting subset for the user. In other words,
crawling should maximize the signal to noise ratio.

The selection of which paths to crawl can follow two general
strategies. The first one is a similarity-based strategy. We can
rank the neighbors of the seed users by how similar they are to
the target seed user, and select the n-top similar. A variation
of this strategy would be a more elaborated collaborative
filtering strategy that recommends users that the seed user
might like. However, both techniques require fetching the
candidates’ profiles a priori to create profiles and compute
similarity between users. This option is discarded for the
intensive (and not allowed) use of Twitter API required. A
second major strategy is that of a trust-based crawling and is
the one chosen for our system as it only needs to analyze the
output interactions from target users, which can be done by a
single query that retrieves the last tweets of a user. New users
are selected by ranking the neighbors of every seed user by
how much the seed user trust them. To compute this trust we
only need to parse the profile of the seed user and count the
retweets and mentions to every other user. From this we can
compute a trust matrix as explained in Section III.

To summarize, the crawling strategy follows the next rule:
For every seed user crawl her profile and the profiles of her
“top trusted” users, and for every user in the “top trusted” set
crawl the profiles of her “top trusted”. We chose the size of the
“top trusted” sets to be 5. Therefore, the system crawls the top
trusted neighbors up to a distance of two steps. We consider
this distance to be good enough to build an interesting set of
tweets to recommend. Crawling further will increase the noise,
making our recommendations achieve a possibly better recall
but far less precision.

Crawled profiles are stored in separate files (one file per
user) to be processed later. The information stored for every
tweet is: Type, user, tweet ID, timestamp, tweet, referred user
and trust. Type can be “normal” (a simple tweet with no
interaction with other users), “mention”, or “retweet”. Referred
user is an optional field that remains empty for normal tweets
and for mentions and retweets, contains the user which our
target user interacted with. If more than one user is contained
in a tweet only the first one is considered. Trust is the
computed trust of the author of the tweet on the referred user,
if any. When the trust system has not computed any trust for
this reference user this value is set to -1.

2) Pruning: As the number of iterations grows and new
users are discovered the interactions matrix also grows. Com-

puting trust propagation has a cost O(n3), which is polynomial
in the number of users n but costly in practice if we let n
grow arbitrarily. An option is to limit n so that the size of the
matrix stabilizes at some feasible size. As seen in Equation
3, the dimensions considered are given by the dimensions of
the transition matrix Q. In order to truncate Q, we delete
those users in the matrix with a low level of interactions.
More specifically, for every user u in the network we keep
the edges to the n-top interacted users and delete the rest of
the edges. Once we have delete the less trusted edges, those
users with no incoming edges are deleted from the matrix. We
chose n = 100.

3) Updating trust: After the transition matrix is updated
and the less trusted users have been deleted from the matrix,
the trust matrix T s is recomputed. This matrix contains the
trust index between every pair of seen users, considering that
trust can be propagated up to two steps.

At every cycle the crawler reads the set of n-top trusted
users for every seed user and fetches their lasts statuses. Note
that, as Algorithm 1 shows, the system updates the transitions
matrix for every node up to a distance of s. The new trust
matrix is then computed from this transition matrix. From this
trust matrix, the crawler will start a new cycle fetching the
last tweets from the target users users (that are always the
same), their top trusted nodes, the top trusted of the top trusted
nodes, and so on up to a distance of s. This way, the crawler
gets a collection of tweets from the top trusted users in the
neighborhood of every target user.

Algorithm 1: Crawling cycle

while True do
S ←− SeedUsers() ∪ TopTrustedUsers()
foreach s ∈ S do

statuses←− GetLastUpdates(s)
UpdateInteracctionsMatrix(s, statuses)

end
TruncateInteractionsMatrix()
UpdateTrustMatrix()
UpdateTopTrustedUsers()

end

B. Recommender

The aim of the recommender module is to periodically (e.g.
every day) get a rank of m-top items for every final user. For
this, it analyzes final users’ publications to create a user profile.
Then, for every final user, it gets a list of tweet candidates to
be recommended. This list is extracted from tweets published
by its neighbors. From this list, a scoring function predicts a
score for every candidate tweet. The highest m-top items are
then showed to the user.

In the next sections we explain this process in more detail.
1) Instance retrieval: First, a file is created for every target

user with a set of positive and negative instances. As Twitter
has no explicit mechanism of rating tweets, we consider



a binary rating where retweets are tagged as positive. The
question now is how to get or identify negative tweets, that
is, tweets the user is not interested in. We follow a similar
reasoning to that of [8] where, in a web search scenario: they
consider that if user u clicked through result 7 but not through
result 6, he must have seen 6 but not felt interested in it. Here,
we consider that given a user u and a user v and given two
contiguous publications v(i − 1), v(i) from user v, if user u
retweets v(i) but not v(i − 1) then it means that user liked
v(i) and not v(i− 1). We are making two assumptions here:
first, that user u read v(i− 1). This might be not true if v(i)
and v(i− 1) are very separated on time. In this case, when u
checks his feed he might see v(i) but not v(i− 1). However,
we assume that users can read most of their feed. The second
assumption is that the first assumption holds even when u is
not subscribed (follower) of user v, that is, a tweet from v has
been propagated through the network until reaching the feed of
user u. Actually, that is why our interaction model does not
consider direct friends but any user, as possible interactions
are not limited to friends (followees).

To get positive and negative instances we read user u tweets
and look for retweets. For every retweet, we check the author
of the original tweet. If the author was between the n-top
trusted nodes at the moment of the retweet, the crawled should
have captured the original tweet beforehand and maybe the
previous ones. Then, we add the original tweet as positive
example and the previous one as a negative example. We use
the original tweet because sometimes users modify the original
one to add their opinion, write it in a personal way, or shorten
some words to fit the tweet in the 140 characters allowed. If
the original tweet of a retweet is not found in the logs, the
example is discarded. Note that we could use Twitter API to
get this tweets but this would increase the number of calls to
the API.

2) Tweet Expander: Text similarity is a important pillar
when recommending text items. Traditional methods to com-
pute text similarity are based on bag-of-word representation
of texts, to compute afterwards a similarity function such as
cosine between the two vectors of words. When dealing with
short texts the probability of a word coincidences falls and
these methods give inaccurate results.

The aim of query expansion is to add more words to the
tweet so that the word occurrences between tweets increase.
We follow the work on [9] and apply a similar method to
expand tweets. The idea of the method is to query a search
engine with our tweet and append the words contained in
the results to the tweet. First, we clean the tweet from any
artifact that could tighten the search (url, hashtags, “RT”, and
usernames). Second, we query Bing search API. Every result
contains some fields such as URL and description. Description
is the snippet of text that is shown for every result. We get the
snippets of text of the first 200 results and add them to the
original text of the tweet. Note that the search engine might
not find 200 results for our tweet query. In fact, given the
extension and complexity of most of tweets in comparison to
a traditional user query, Bing finds no results or just about five

or ten in the best cases. The main risk of tweet expansion is
getting much more noise (unrelated results) than signal (related
results).

3) Preprocessing: The aim of preprocessing is normalizing
the text (tokenization, filtering stop words and stemming) and
cleaning it from non-text artifacts (numbers, url). As url can
be informative they will be added later as a boolean feature
that says whether a tweet contains a url or not.

4) Dictionary extraction: The aim of dictionary extraction
is to create a dictionary of words that will act as word features.
A common technique is to use most frequent words in the
set of documents. This avoids having an excessively large set
of word features that would not only slow down but make
our classifier more inaccurate (the curse of dimensionality).
However, as our dataset for every user is relatively small we
add every word to the dictionary.

We create two dictionaries. The first one is a simple bag-
of-words and the second is a term frequency weighted bag-of-
words. In the second case, for every word in the dictionary we
compute the log ratio between its occurrences in the positive
examples and the occurrences in the negative examples. The
formula is

tf = log
POSw

NEGw
(5)

the tf value is 0 when the word is equally used in positive and
negative examples. It will be positive when predominant in
positive examples and negative when predominant in negative
examples. It can be easily learnt from any classifier that
words with tf(w) = 0 are non discriminant with no need
of eliminating the word feature.

5) Instance to features: In this step we convert the instances
into sets of features so that a traditional classification algorithm
can work with them. We extract the following features: trust,
url, words which we describe below.

trust is a real value [0,1] that indicates the trust from the
target user to the user who made the original tweet (at the
moment of the retweet).

url is a binary variable that indicates whether the tweet
contains any url or not.

words is a set of features that expresses the content of the
tweet. This information can be codified in different ways. The
basic form is a boolean bag of words (one if the word is in the
tweet and 0 if it is not) with words taken from the previously
extracted dictionary. We can express the bag of words with the
tf value of every word, as explained in section V-B4. We can
also collapse these bag of words by computing the distance
from the tweet to the corpus using the tf dictionary. We will
use the first and the third encodings denoted as bow and tf.

6) Training and scoring: Finally, the system is trained over
all the past tweets and is ready to score a new tweet candidate.
These candidates are taken from the top trusted neighbors. If
we want the system to recommend the n-top tweets every day,
candidate tweets will be those tweets in the neighborhood that
have been published today (or after the last recommendation
to the user was made).



Note that ten retweets talking about some new topic must be
more important than one hundred tweets talking about another
topic two months ago. To give some adaptivity to the system
in terms of concept drift, a decay factor should be applied to
past tweets. For now, we are not considering any decay factor
for tweets.

VI. EXPERIMENTS

To test the system we selected 20 seed users from our twitter
network. Their interests range from politics to professional
coaching. Their main language is Catalan, Spanish, or En-
glish. We crawled these users and their neighborhood for six
months. After processing users’ logs we got an average of 314
instances which are balanced (around 50%-50% of retweets
and non-retweets).

A. Validation of the trust model
We have no direct way of testing the accuracy of our

trust propagation model. The ideal scenario would be having
a full annotated network where every user has rated every
other user. As we do not have such a network, we follow a
similar approach to that of Golbeck [1] to see how our trust
model does on direct neighbors. Later, we will test how trust
information affects the accuracy of recommendations on this
network. Golbeck did the following process for every user:
For each neighbor ni of the user (source), a list of common
neighbors of the user and ni was compiled. For each of those
neighbors, the difference between the source rating and ni
rating of the neighbor (i.e. computed trust) was recorded as
a measure of accuracy. We call this difference ∆. A smaller
∆ means higher accuracy. But unlike Golbeck, we are not
interested on the absolute value of trust but on the resulting
ranking of users ordered by their given trust. We would like
to know whether a common neighbor is similarly (say, highly)
trusted by both users, without caring for what “high” means
for each user. For instance, let a be a user whose most trusted
friend is b, Let b be a user whose most trusted friend is c,
and let c be also a friend of a. We would like our trust model
to place c between the most trusted users of a. A solution
can be to compare rankings of a and b. However, this can
only be done when a and b rank the same users. To solve this
we normalized the rankings of our users following the next
normalization formula for every item in the original ranking:

normalized rank(r) =
r − 1

R− 1
(6)

where r is the ordinal value of the item and R is the length of
the rank. The normalized ranking has all its values into [0,1].

To analyze the impact of trust decay we compare behaviors
of delta when no decay is used and when an exponential and a
linear decay is applied. The formula for the exponential decay
used is:

αn = c
1

1.5n
(7)

where c is a normalizing factor to make the sum of α’s to be
1. And the formula for the linear decay is:

αn = c(nmax − n+ 1) (8)

TABLE I
RELATION OF TRUST RANK AND DELTA

Ranking
(0-10)

∆
No decay

∆
Linear decay

∆
Exp.decay

(0-1) 1.14 0.90 0.87
(1-2) 1.10 1.22 1.09
(2-3) 0.96 1.05 1.05
(3-4) 1.07 1.18 1.20
(4-5) 1.09 0.81 1.01
(5-6) 1.13 1.11 0.92
(6-7) 0.91 1.08 1.16
(7-8) 0.90 1.08 0.99
(8-9) 1.3 1.34 1.34

(9-10) 1.26 1.11 1.16

Table I shows the average values of ∆ at every position
of the ranking of trust. The trust rank and ∆ have been
normalized to a [0-10] range. We would expect a smaller
∆ in the top users, i.e. more agreement among common
neighbors. However, we see no clear correlation between
neighbors ratings and ∆. This might be caused either by
our model being wrong or by transitivity not holding in this
scenario.

If a user a trusts a user b, this can have a double meaning:
First, it can reflect a general interest on what b publishes.
As direct trust is computed by analyzing the interactions
between users this is, by definition, a characteristic of our
model; A second characteristic is that of transitivity when
endorsing other users. If a trusts b and b trusts c, a would
trust c if a) transitivity holds and b) the propagation model
is appropriate. The general validity of our trust model will be
further discussed in the next section. As for transitivity, the
lack of correlation shown in the table seems to indicate that
there is no apparent trust transitivity occurring in Twitter.

It would be interesting to know whether we do not see
apparent transitivity on trust because trust is not transitive
on Twitter, or because our trust model does not capture
it appropriately. If the original interactions are transitive (a
highly interacting with b and b highly interacting with c
implies a highly interacting with c) we would infer that our
trust model does not keep transitivity. One could even say that
a model based on transitivity, such as MarkovTrust and most
of trust models, might not be appropriate in such scenario.

Table II is similar to table I but uses the stored interactions
instead of the computed trust. The table shows that there is a
slight correlation but that it is opposite to the correlation we
expected. It seems that, in terms of interactions, users agree
less about those with whom they interact more. This might
be an effect of our selective crawling or due to a lack of
more data to make the patterns statistically sound. Anyway,
no transitivity is apparent in the interactions.

Even if there is no evidence of transitivity, we observe a
low ∆ at every position of the rank. That is, either considering
interactions or inferred trust, common neighbors are similarly
trusted (or interacted).

B. Influence of trust on recommendations

We would like to test whether our trust model is good
enough to enhance the performance of a recommender system



TABLE II
RELATION OF INTERACTIONS RANK AND DELTA

Ranking [0-10] ∆
[0 − 1) 1.36
[1 − 2) 0.75
[2 − 3) 1.14
[3 − 4) 0.83
[4 − 5) 0.78
[5 − 6) 0.52
[6 − 7) 1.06
[7 − 8) 0.53
[8 − 9) 0.57
[9 − 10) 0.17

TABLE III
ACCURACY OF RETWEET PREDICTION

Cl. Exp Enc Acc Rec Prec F1 AUC

Tr
us

t

NB
yes bow 50.76 59.43 52.07 55.51 50.93

tf 52.38 58.99 52.52 55.57 52.58

no bow 48.79 53.01 47.76 50.25 49.88
tf 51.97 50.49 50.60 50.44 51.51

SVM
yes bow 45.84 61.00 30.22 40.42 50.53

tf 47.63 51.36 46.95 49.06 47.94

no bow 46.25 68.42 32.47 44.04 50.00
tf 47.79 46.38 48.44 47.39 47.32

Averages 48.93 56.13 45.13 49.08 50.09

N
o

tr
us

t NB
yes bow 47.02 57.58 48.90 52.89 49.56

tf 51.13 49.56 54.81 52.05 52.22

no bow 49.28 47.98 50.76 49.33 50.54
tf 46.12 45.18 45.84 45.51 46.28

SVM
yes bow 45.22 55.83 27.05 36.44 50.06

tf 49.23 49.36 51.47 59.39 49.80

no bow 43.40 34.87 17.59 23.38 50.22
tf 47.11 41.55 48.87 44.91 47.32

Averages 47.31 47.73 43.16 45.49 49.50

in Twitter. In order to test this, consider the recommender
system explained in section V. Given a set of retweets a user
has made (positive instances) and another set not retweeted
by the user (negative instances), our recommender system
tries to learn a model to predict whether a non-seen tweet
will be retweeted by the user. As we are applying offline
experimentations and we do not have access to future tweets,
we split this collection of tweets on training set (75%) and
test set (25%). As these test tweets are past tweets, we know
whether the user retweeted them or not. In other words, the
instances are all tagged. We compared models in a search
space as shown in III. We tested both SVM (RBF kernel with
C = 1.0 and γ set to the inverse of the number of features) and
Naive Bayes classifiers combined with the multiple techniques
explained in section V: Trust, tweet expansion and encoding
of word features. Metrics used are accuracy, recall, precision,
F1, and AUC.

For intuition, table III shows the averages of the models
with and without trust for different metrics. Though the small
size of the dataset does not allow to draw rigorously sound
conclusions, we observe that models using trust information
seem to perform better, and in particular recall seems to
be most benefited without compromising precision. However,
note that we are using a class-balanced set so that the baselines
are all 50%. These poor results of our recommender are
probably due to the difficulty of the task at hand and the

simplicity of our model. Using more sophisticated attributes
would probably enhance these results.

VII. CONCLUSIONS

In this paper we presented MarkovTrust, a model to estimate
trust between users based on users interactions. We applied this
trust model to Twitter and studied some of its properties. To
test the utility of MarkovTrust we developed a recommender
system framework that first crawls the Twitter network fol-
lowing the top trusted neighbors of target users, and then
makes tweet recommendations based both on past retweets
and estimated trust. Though not statistically sound due to lack
of data, experiments show that such a trust model does not
respect the idea of transitivity of trust. However, recommen-
dations are enhanced when using MarkovTrust which makes
us think that the model has some good properties for trust-
based recommender systems. We think further study of these
properties, as well as the properties and patterns in micro-
blogging social networks, can shed interesting results in the
future when applied to more complete recommender systems.
Likewise, further analysis should be done on the marginal
contribution of mentions and retweets to the accuracy of trust.

ACKNOWLEDGEMENTS

This research work has been supported by the Spanish Min-
istry of Education and Science (projects TIN2008-06582-C03-
01 SESAAME and TIN2011-27479-C04-03, BASMATI), by
the EU PASCAL2 Network of Excellence, and by Generalitat
de Catalunya (2009-SGR-1428).

REFERENCES

[1] J. Golbeck, “Computing and applying trust in web-based social networks,”
Ph.D. dissertation, University of Maryland at College Park, 2005.

[2] P. Massa and P. Avesani, “Trust-aware recommender systems,” in Pro-
ceedings of the 2007 ACM conference on Recommender systems. ACM,
2007, pp. 17–24.

[3] S. D. Kamvar, M. T. Schlosser, and H. Garcia-Molina, “The Eigentrust
algorithm for reputation management in P2P networks,” in Proceedings
of the twelfth international conference on World Wide Web - WWW ’03.
New York, New York, USA: ACM Press, 2003, p. 640.

[4] R. Levien, “Attack-resistant trust metrics for public key certification,”
Proceedings of the 7th conference on USENIX Security Symposium, vol. 7,
1998.

[5] C.-N. Ziegler and G. Lausen, “Spreading activation models for trust
propagation,” Proceedings of the 2004 IEEE International Conference
on e-Technology, e-Commerce and e-Service (EEE’04), 2004.

[6] M. Richardson, R. Agrawal, and P. Domingos, “Trust Management for
the Semantic Web,” Proceedings of the Second International Semantic
Web Conference, 2003.

[7] X. Song, B. L. Tseng, C.-Y. Lin, and M.-T. Sun, “Personalized recom-
mendation driven by information flow,” Proceedings of the 29th annual
international ACM SIGIR conference on Research and development in
information retrieval - SIGIR ’06, p. 509, 2006.

[8] T. Joachims, “Optimizing Search Engines using Clickthrough Data,”
Proceedings of the eighth ACM SIGKDD international conference on
Knowledge discovery and data mining, 2002.

[9] M. Sahami and T. D. Heilman, “A web-based kernel function for
measuring the similarity of short text snippets,” Proceedings of the 15th
international conference on World Wide Web WWW 06, vol. pages, p.
377, 2006.


